

Halborn CTF

CTF: HalbornCTF_Rust_Solana

Author: Cristian Giustini

Version: 1.0

Last update: 2022/03/29

Contents
High-Level Analysis.. 3

Technical analysis .. 4

Vulnerabilities ... 6

Lack of checks for the source address (creator_token_account_info) ... 6

Proof of concept ... 7

Weak authorization mechanism for the “authority_info” parameter ... 7

Proof of concept ... 8

Weak authorization mechanism for the “authority_info” parameter ... 10

Final considerations .. 10

High-Level Analysis
The target application is a Solana project that automates the creation of a farm. The project is written in

Rust language.

Further details about the application from a user point of view:

• The application allows a user to create a farm

• Farms are deactivated by default

• Creators have to pay a fee of 5000 tokens to enable the farm

• Farms cannot be activated multiple times

Technical analysis
The “lib.rs” contains the “process_instruction” that forwards every request to the

“processor::Processor::process” function.

Figure 1 The main entrypoint

The “processor::Processor::process” function takes the program_id, account list and instruction data as

a parameter.

Figure 2 The process function on process.rs file

Since this is the core of the entire application, the whole logic can be summarized as follow:

- The “farm_data”, which is a Farm struct, should contain an enabled flag set to 0 in order to

bypass logic on lines 77-79

- The “creator_info”, which will be the authority, needs to be signed (lines 81-83)

- The creator of the farm_data object signature needs to be the same as the authority (lines 85,

87)

- The “authority_info” public key needs to be generated by following the logics of the

“Self::authority_id”, which is a proxy to “Pubkey::create_program_address” (line 89)

- The “amount” must match the FARM_FEE constant (which is 5000 tokens) (line 93)

- The “fee_vault_owner” is unpacked from the slice of “fee_vault_info”, which represents the

destination address of the tokens (line 100)

- All the above data plus the nonce parameter of the Farm struct and the “token_account_info”

parameter are passed to the function “token_transfer”.

Vulnerabilities

Lack of checks for the source address (creator_token_account_info)
Severity: Critical

As defined in the TokenInstruction::transfer instruction, the operation accepts three accounts which

are:

- Source address: the source account from which to get the tokens

- Destination address: the destination account

- Signer: the source account’s owner/delegate

As shown in the following screenshot, the process function does not provide any checks for the

“creator_token_account_info” and the “owner” parameter of the Account is not checked against the

specified authority.

Figure 3 The source account parameter

As a consequence, an attacker could create a farm and pay the fee by using arbitrary accounts, including

the ones that does not belong to the same authority.

Proof of concept

Figure 4 PoC Framework - Creation of the victim account

Figure 5 Executing the transaction by passing the "victim" as a fee_vault parameter

Weak authorization mechanism for the “authority_info” parameter
Severity: High

The authority_info, which is not used by the transaction itself but as a checker for the authorization

flow, does use an insecure way to verify the incoming key.

The program checks if the value contained in the “authority_info.key” matches the value generated by

the Pubkey::create_program_address function.

Figure 6 Authority_info check

Figure 7 The authority_id proxy function

As shown in the screenshot above, the program uses the Pubkey::create_program_address function to

generate a key. This function will try to generate a Pubkey (or a FarmError) from the parameters:

- program_id

- my_info: This is the farm_id_info account sent by the user

- nonce: A value that will come from the “farm_data” Account and that will be appended along

with the byte representation of the public key

-

Proof of concept
By knowing this, and since the “owner” field is not checked at all, it is possible to craft a Pubkey that

matches the same logic of the Pubkey::create_program_address and the same nonce in order to bypass

the check:

Figure 8 PoC Framework - Pubkey crafting

Figure 9 Creating a Farm struct that matches the same nonce

Figure 10 Executing the transaction

Unsafe use of the try_from_slice_unchecked function
Severity: Info

The application is using the “try_from_slice_unchecked” function to extract the farm data information

from the account.

The function itself is potentially not safe since it cannot guarantee that a buffer greater or equal to the

expected size will properly deserialize.

Further information is available in the Solana docs:

https://docs.rs/solana-sdk/1.6.9/solana_sdk/borsh/fn.try_from_slice_unchecked.html

Final considerations
The final exploit that uses the PoC framework allowed to inject an arbitrary value for the “source”

address of the token address.

The result of the transaction is shown below.

Note: The “BorshIOError” is returned after the Transfer transaction is made in the “process” function

and it is probably caused by a misconfiguration of the Borsh Deserializer, which I was not able to

configure properly. Nonetheless, as shown in the green rectangle, the final transaction has been

executed correctly.

https://docs.rs/solana-sdk/1.6.9/solana_sdk/borsh/fn.try_from_slice_unchecked.html

Figure 11 Transaction execution

